Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 274: 114059, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33794333

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazil, ethnopharmacological studies show that Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz is commonly used in folk medicine as an antifungal, antimicrobial and anti-inflammatory. In the Amazon region, the dried fruit powder of L. ferrea are widely used empirically by the population in an alcoholic tincture as an antimicrobial mouthwash in oral infections and the infusion is also recommended for healing oral wounds. However, there are few articles that have evaluated the antimicrobial activity against oral pathogens in a biofilm model, identifying active compounds and mechanisms of action. AIM OF THE STUDY: The aim of this study was to evaluate the antimicrobial and anti-adherence activities of the ethanolic extract, fractions and isolated compounds (gallic acid and ethyl gallate) of the fruit and seed of L. ferrea against Streptococcus mutans. The inhibition of acidicity/acidogenicity and the expression of the S. mutans GTF genes in biofilms were also evaluated. MATERIALS AND METHODS: Minimal Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Inhibitory Concentration of Cell Adhesion (MICA) were evaluated with ethanolic extract (EELF), fractions, gallic acid (GA) and ethyl gallate (EG) against S. mutans. Inhibition of biofilm formation, pH drop and proton permeability tests were conducted with EELF, GA and EG, and also evaluated the expression of the GTF genes in biofilms. The compounds of dichloromethane fraction were identified by GC-MS. RESULTS: This is the first report of shikimic, pyroglutamic, malic and protocatechuic acids identified in L. ferrea. EELF, GA and EG showed MIC at 250 µg/mL, and MBC at 1000 µg/mL by EELF. EELF biofilms showed reduced dry weight and acidogenicity of S. mutans in biofilms. GA and EG reduced viable cells, glucans soluble in alkali, acidogenicity, aciduricity and downregulated expression of gtfB, gtfC and gtfD genes in biofilms. SEM images of GA and EG biofilms showed a reduction of biomass, exopolysaccharide and microcolonies of S. mutans. CONCLUSIONS: The ethanolic extract of fruit and seed of L. ferrea, gallic acid and ethyl gallate showed great antimicrobial activity and inhibition of adhesion, reduction of acidogenicity and aciduricity in S. mutans biofilms. The results obtained in vitro validate the use of this plant in ethnopharmacology, and open opportunities for the development of new oral anticariogenic agents, originated by plants that can inhibit pathogenic biofilm that leads to the development of caries.


Assuntos
Antibacterianos/farmacologia , Fabaceae , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Extratos Vegetais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/prevenção & controle , Frutas , Ácido Gálico/análise , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Sementes , Streptococcus mutans/genética , Streptococcus mutans/fisiologia
2.
Microb Pathog ; 142: 104063, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32061821

RESUMO

Dental caries is a multifactorial chronic-infection disease, which starts with a bacterial biofilm formation caused mainly by Streptococcus mutans. The use of probiotics has shown numerous health benefits, including in the fight against oral diseases. Strains of Lactobacillus fermentum have already shown probiotic potential against S. mutans, but there are still few studies. Thus, the aim of our study was to evaluate the antimicrobial activity of the inoculum and metabolites produced by L. fermentum TcUESC01 against S. mutans UA159. For this, a growth curve of L. fermentum was performed and both the inoculum and the metabolites formed in the fermentation were tested against the growth of S. mutans UA159 in agar diffusion tests, and only its metabolites were tested to determine the minimum inhibitory concentration, minimal bactericidal concentration and inhibition of cell adhesion. Inhibition of biofilm formation, pH drop and proton permeability were also tested with the metabolites. The zone of inhibition began to be formed at 14 h and continued until 16 h. The inoculum containing L. fermentum also showed zone of inhibition. The MIC for the metabolites was 1280 mg/mL and the MBC was obtained with a concentration higher than the MIC equal to 5120 mg/mL. Half of the MIC concentration (640 mg/mL) was required to inhibit S. mutans adhesion to the surface of the microplates. In the biofilm analyzes, the treatment with the metabolites in the tested concentration was not able to reduce biomass, insoluble glucans and alkali soluble compared to the control biofilm (p > 0.05). The metabolites also did not affect acid production and acid tolerance of S. mutans cells in biofilms compared to saline group (p > 0.05). Lactic acid (50.38%) was the most abundant organic acid produced by L. fermentum. This is the first report showing that the metabolites produced by the Lactobacillus fermentum TcUESC01 have a potential to be used as an antimicrobial agent against S. mutans, showing anti-adherence and bactericidal activity against planktonic cells of S. mutans. Thus, further studies should be carried out in order to better understand the antimicrobial activity of metabolites of L. fermentum TCUESC01.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...